92 research outputs found

    Planar Prior Assisted PatchMatch Multi-View Stereo

    Full text link
    The completeness of 3D models is still a challenging problem in multi-view stereo (MVS) due to the unreliable photometric consistency in low-textured areas. Since low-textured areas usually exhibit strong planarity, planar models are advantageous to the depth estimation of low-textured areas. On the other hand, PatchMatch multi-view stereo is very efficient for its sampling and propagation scheme. By taking advantage of planar models and PatchMatch multi-view stereo, we propose a planar prior assisted PatchMatch multi-view stereo framework in this paper. In detail, we utilize a probabilistic graphical model to embed planar models into PatchMatch multi-view stereo and contribute a novel multi-view aggregated matching cost. This novel cost takes both photometric consistency and planar compatibility into consideration, making it suited for the depth estimation of both non-planar and planar regions. Experimental results demonstrate that our method can efficiently recover the depth information of extremely low-textured areas, thus obtaining high complete 3D models and achieving state-of-the-art performance.Comment: Accepted by AAAI-202

    Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume

    Full text link
    Deep learning has shown to be effective for depth inference in multi-view stereo (MVS). However, the scalability and accuracy still remain an open problem in this domain. This can be attributed to the memory-consuming cost volume representation and inappropriate depth inference. Inspired by the group-wise correlation in stereo matching, we propose an average group-wise correlation similarity measure to construct a lightweight cost volume. This can not only reduce the memory consumption but also reduce the computational burden in the cost volume filtering. Based on our effective cost volume representation, we propose a cascade 3D U-Net module to regularize the cost volume to further boost the performance. Unlike the previous methods that treat multi-view depth inference as a depth regression problem or an inverse depth classification problem, we recast multi-view depth inference as an inverse depth regression task. This allows our network to achieve sub-pixel estimation and be applicable to large-scale scenes. Through extensive experiments on DTU dataset and Tanks and Temples dataset, we show that our proposed network with Correlation cost volume and Inverse DEpth Regression (CIDER), achieves state-of-the-art results, demonstrating its superior performance on scalability and accuracy.Comment: Accepted by AAAI-202
    • …
    corecore